Transport and Regulation of the Cardiac Na+-Ca2+ Exchanger, NCX1

نویسندگان

  • Michael Trac
  • Christopher Dyck
  • Mark Hnatowich
  • Alexander Omelchenko
  • Larry V. Hryshko
چکیده

Cardiac muscle fails to relax upon replacement of extracellular Ca2+ with Ba2+. Among the manifold consequences of this intervention, one major possibility is that Na(+)-Ba2+ exchange is inadequate to support normal relaxation. This could occur due to reduced transport rates of Na(+)-Ba2+ exchange and/or by failure of Ba2+ to activate the exchanger molecule at the high affinity regulatory Ca2+ binding site. In this study, we examined transport and regulatory properties for Na(+)-Ca2+ and Na(+)-Ba2+ exchange. Inward and outward Na(+)-Ca2+ or Na(+)-Ba2+ exchange currents were examined at 30 degrees C in giant membrane patches excised from Xenopus oocytes expressing the cloned cardiac Na(+)-Ca2+ exchanger, NCX1. When excised patches were exposed to either cytoplasmic Ca2+ or Ba2+, robust inward Na(+)-Ca2+ exchange currents were observed, whereas Na(+)-Ba2+ currents were absent or barely detectable. Similarly, outward currents were greatly reduced when pipette solutions contained Ba2+ rather than Ca2+. However, when solution temperature was elevated from 30 degrees C to 37 degrees C, a substantial increase in outward Na(+)-Ba2+ exchange currents was observed, but not so for inward currents. We also compared the relative abilities of Ca2+ and Ba2+ to activate outward Na(+)-Ca2+ exchange currents at the high affinity regulatory Ca2+ binding site. While Ba2+ was capable of activating the exchanger, it did so with a much lower affinity (KD approximately 10 microM) compared with Ca2+ (KD approximately 0.3 microM). Moreover, the efficiency of Ba2+ regulation of Na(+)-Ca2+ exchange is also diminished relative to Ca2+, supporting approximately 60% of maximal currents obtainable with Ca2+. Ba2+ is also much less effective at alleviating Na+i-induced inactivation of NCX1. These results indicate that the reduced ability of NCX1 to adequately exchange Na+ and Ba2+ contributes to failure of the relaxation process in the cardiac muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous regulation of the Drosophila Na(+)-Ca2+ exchanger by Ca2+

The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage re...

متن کامل

Sodium/calcium exchange: its physiological implications.

The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradie...

متن کامل

Rapid turnover of the "functional" Na(+)-Ca2+ exchanger in cardiac myocytes revealed by an antisense oligodeoxynucleotide approach.

Antisense oligodeoxynucleotides (AS-ODNs) were used in combination with transient functional expression of the cardiac Na(+)-Ca2+ exchanger (NCX1) to correlate suppression of the Na(+)-Ca2+ exchange function with down-regulation of NCX1 protein expression. In a de-novo expression system (Sf9 cells), a decrease in both, NCX1 mRNA and protein after AS-ODN application was paralleled by diminished ...

متن کامل

Effects of Leptin on Na+/Ca2+ Exchanger in PC12 Cells.

BACKGROUND/AIMS Alzheimer's disease (AD) is known to be related to alterations in neuronal intracellular calcium activity ([Ca2+]i). The present study revealed the distinct role of leptin in Na+/Ca2+-exchanger activity. METHODS [Ca2+]i was determined utilizing Fura-2 fluorescence. The activity of NCX was measured by removal of extracellular Na+ in the presence of external Ca2+. Na+/Ca2+-excha...

متن کامل

Cardiac expression of the Na+/Ca2+exchanger NCX1 is GATA factor dependent.

The cardiac sarcolemmal Na+/Ca2+exchanger plays a primary role in Ca2+ efflux and is important in regulating intracellular Ca2+ and beat-to-beat contractility. Of the three Na+/Ca2+exchanger genes cloned (NCX1, NCX2, and NCX3), only NCX1 is expressed in cardiac myocytes. NCX1 has alternative promoters for heart, kidney, and brain tissue-specific transcripts. Analysis of the cardiac NCX1 promote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1997